Algorithms for Finding Nash Equilibria

The best way to identify the Nash equilibria of a game is to first identify all of the outcomes that are *not* Nash equilibria; anything left must be a Nash equilibrium. For example, consider the game in Figure 1. The strategy pair (U, L) is not a Nash equilibrium because Player 2 can gain by deviating alone to R; (U, C) is not a NE because Player 1 can gain by deviating alone to D (and Player 2 can gain by deviating alone to L or R); etc. If you go through the options one by one and cross out those that are *not* Nash equilibria, the remaining options *will* be Nash equilibria (See Figure 2a).

		Player 2			
		L	\mathbf{C}	\mathbf{R}	
Player 1	U	5,1	2,0	2,2	
	\mathbf{M}	0,4	1,5	4,5	
	D	2,4	3,6	1,0	

Figure 1: Nash equilibrium example

A shortcut (but one you should use carefully!) is to underline each player's best responses. To apply this to the game in Figure 1, first assume that Player 2 plays L; Player 1's best response is to play U, so underline the "5" in the box corresponding to (U, L). Next assume that Player 2 plays C; Player 1's best response is to play D, so underline the "3" in the box corresponding to (D, C). Finally, assume that Player 2 plays R; Player 1's best response is to play M, so underline the "4" in the box corresponding to (M, R). Now do the same thing for Player 2: go through all of Player 1's options and underline the best response for Player 2. (Note that C and R are both best responses when Player 1 plays M!) We end up with Figure 2b: the only boxes with both payoffs underlined are (D, C) and (M, R), the Nash equilibria of the game.

¹It is easy to confuse the rows and columns and end up underlining the wrong things. Always double-check your answers by confirming that no player can gain by deviating alone.

	\mathbf{L}	\mathbf{C}	\mathbf{R}		\mathbf{L}	\mathbf{C}	\mathbf{R}
U	<i>\$</i> //¥	2/ , Ø	2//2				2,2
		14,73	4,5	M	0,4	1, <u>5</u>	<u>4,5</u>
D	2//4	3,6	1/,Ø	D	2,4	<u>3,6</u>	1,0
(a)				(b)			

Figure 2: Finding Nash equilibria: (a) with strike-outs; (b) with underlinings